Estimating Crop Coefficients Using Remote Sensing-Based Vegetation Index

نویسندگان

  • Baburao Kamble
  • Ayse Kilic
  • Kenneth G. Hubbard
چکیده

Crop coefficient (Kc)-based estimation of crop evapotranspiration is one of the most commonly used methods for irrigation water management. However, uncertainties of the generalized dual crop coefficient (Kc) method of the Food and Agricultural Organization of the United Nations Irrigation and Drainage Paper No. 56 can contribute to crop evapotranspiration estimates that are substantially different from actual crop evapotranspiration. Similarities between the crop coefficient curve and a satellite-derived vegetation index showed potential for modeling a crop coefficient as a function of the vegetation index. Therefore, the possibility of directly estimating the crop coefficient from satellite reflectance of a crop was investigated. The Kc data used in developing the relationship with NDVI were derived from back-calculations of the FAO-56 dual crop coefficients procedure using field data obtained during 2007 from representative US cropping systems in the High Plains from AmeriFlux sites. A simple linear regression model ( ) is developed to establish a general relationship between a normalized difference vegetation index (NDVI) from a moderate resolution satellite data (MODIS) and the crop coefficient (Kc) calculated from the flux data measured for different crops and cropping practices using AmeriFlux towers. There was a strong linear correlation between the NDVI-estimated Kc and the measured Kc with an r 2 of 0.91 and 0.90, while the root-mean-square error (RMSE) for Kc in 2006 and 2007 were 0.16 and 0.19, respectively. The procedure for quantifying crop coefficients from NDVI data presented in this paper should be useful in other regions of the globe to understand regional irrigation water consumption. OPEN ACCESS Kamble, Kilic, & Hubbard in MDPI Remote Sensing (2013) 5. Copyright © 2013, the authors. Licensee MDPI, Basel, Switzerland. Open access, Creative Commons Attribution license 4.0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Algorithm for Estimating Agricultural and Riparian Evapotranspiration Using MODIS Enhanced Vegetation Index and Ground Measurements of ET. II. Application to the Lower Colorado River, U.S

Large quantities of water are consumed by irrigated crops and riparian vegetation in western U.S. irrigation districts. Remote sensing methods for estimating evaporative water losses by soil and vegetation (evapotranspiration, ET) over wide river stretches are needed to allocate water for agricultural and environmental needs. We used the Enhanced Vegetation Index (EVI) from MODIS sensors on the...

متن کامل

An Empirical Algorithm for Estimating Agricultural and Riparian Evapotranspiration Using MODIS Enhanced Vegetation Index and Ground Measurements of ET. I. Description of Method

We used the Enhanced Vegetation Index (EVI) from MODIS to scale evapotranspiration (ETactual) over agricultural and riparian areas along the Lower Colorado River in the southwestern US. Ground measurements of ETactual by alfalfa, saltcedar, cottonwood and arrowweed were expressed as fraction of potential (reference crop) ETo (EToF) then regressed against EVI scaled between bare soil (0) and ful...

متن کامل

Empirical Regression Models for Estimating Multiyear Leaf Area Index of Rice from Several Vegetation Indices at the Field Scale

Leaf area index (LAI) is among the most important variables for monitoring crop growth and estimating grain yield. Previous reports have shown that LAI derived from remote sensing data can be effectively applied in crop growth simulation models for improving the accuracy of grain yield estimation. Therefore, precise estimation of LAI from remote sensing data is expected to be useful for global ...

متن کامل

Estimation of Crop Evapotranspiration of Cotton using Remote Sensing Technique

Crop coefficient values are used to estimate crop evapotranspiration (ETc) for determining irrigation scheduling. Many important crop biophysical properties such as Percentage Vegetation Cover and Leaf Area Index can be estimated from remotely sensed Vegetation Index, in order to quantify real time vegetation growth dynamics. The objective of this study was to understand the effectiveness of ba...

متن کامل

A Total Ratio of Vegetation Index (TRVI) for Shrubs Sparse Cover Delineating in Open Woodland

Persian juniper and Pistachio are grown in low density in the rangelands of North-East of Iran. These rangelands are populated by evergreen conifers, which are widespread and present at low-density and sparse shrub of pistachio in Iran, that are not only environmentally but also genetically essential as seed sources for pistachio improvement in orchards. Rangelands offer excellent opportunities...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2013